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Abstract:  Objective: This study aimed to evaluate the predictive role of 
both preoperative and postoperative urea levels in estimating mortality 
risk for patients undergoing open-heart surgery. Although the prognostic 
value of urea levels remains underutilized in clinical practice, this study 
emphasizes its potential significance in risk stratification.

Methods:In this retrospective analysis, data from patients who had 
undergone open-heart surgery were reviewed, focusing on the relationship 
between their preoperative and postoperative urea levels and mortality 
outcomes. The data were analyzed statistically, employing multivariate 
analyses to determine the impact of urea levels on mortality risk.

Results: The analysis demonstrated that each unit increase in postoperative 
urea level correlated with a 5% increase in mortality risk. These findings 
reveal a compelling association between elevated urea levels and mortality, 
supporting the prognostic significance of urea as a biomarker. Additionally, 
higher preoperative urea levels were associated with lower survival rates, 
particularly among high-risk patients.

Conclusions: Our findings suggest that both preoperative and 
postoperative urea levels are critical determinants of mortality risk 
following open-heart surgery. Routine monitoring of these biomarkers 
could improve postoperative outcomes, particularly in high-risk patient 
groups. This study underscores the value of incorporating urea levels into 
standard perioperative assessment protocols to enhance patient survival 
rates.
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Abbreviations and acronyms:

AKI: Acute Kidney Injury

CPB: Cardiopulmonary Bypass

EF: Ejection Fraction

HT: Hypertension

DM: Diabetes Mellitus

OR: Odds Ratio

CI: Confidence Interval

CRP: C-Reactive Protein

INTRODUCTION

Open-heart surgery remains a primary approach 
in managing severe cardiovascular conditions. 
Procedures involving cardiac surgery, particularly 
those utilizing cardiopulmonary bypass (CPB), are 
associated with substantial systemic inflammation 
and hemodynamic variability, both of which 
profoundly affect postoperative outcomes (1). These 
procedures expose patients to marked metabolic 
stress and hemodynamic instability, elevating the 
risk of severe complications (1-3). Specifically, the 
fluctuations in hemodynamics and inflammatory 
responses during CPB elevate the risk of acute kidney 
injury (AKI) in vulnerable patients, correlating with 
increased mortality rates (4,5). These adverse effects 
emphasize the importance of early identification of 
at-risk patients to enable customized perioperative 
care and reduce complications. Beyond its role as 
a marker of renal function, urea levels also reflect 
systemic inflammatory responses, which play a 
critical role in the pathophysiology of postoperative 
complications. This dual nature of urea underscores 
its importance as a biomarker not only for kidney 
health but also for broader systemic stress indicators. 
Routine protocols, especially in preoperative risk 
assessments, have limited utilization of biomarkers. 
Considering the unique role of urea levels in assessing 
both renal function and systemic inflammation, it is 
anticipated to fill this gap. The use of urea monitoring 
as a potential tool for early identification of high-
risk patients can significantly enhance perioperative 
care. In the literature, the study by Liaño and Pascual 
reports that high preoperative urea levels increase 

mortality risk. Similarly, Refaat et al. emphasize that 
perioperative urea monitoring strongly correlates 
with organ dysfunction and mortality. These 
findings align with our study, which underscores 
the prognostic importance of preoperative and 
postoperative urea levels.

Inflammatory responses during CPB have been 
linked to an increased risk of AKI and subsequent 
mortality in patients with impaired renal function 
(14,16). Such complications are often exacerbated 
by factors like systemic inflammation and hypoxia, 
leading to compromised kidney function, with 
urea levels emerging as a key biomarker in this 
progression (6-8). Studies indicate that urea levels 
are not solely indicators of kidney function but are 
also reflective of systemic inflammation and tissue 
hypoxia (9). Urea has been established as a significant 
predictor of mortality, given its association with both 
renal impairment and the systemic inflammatory 
response (7,8). Martin et al. noted that elevated 
urea levels post-cardiovascular surgery are linked 
with increased mortality, particularly in cases 
involving renal failure and tissue hypoxia (2). Our 
findings similarly show that each unit increase in 
postoperative urea levels corresponds to a 5% rise in 
mortality risk, affirming the prognostic value of urea 
within our patient cohort. Elevated urea levels also 
correlate with cardiovascular complications such as 
heart failure and cerebrovascular events, in addition 
to renal dysfunction (10,11). These associations 
suggest that beyond kidney function, overall 
inflammatory and immune responses critically 
influence postoperative mortality risk (12-14).

Preoperative assessment of renal function is 
crucial for reducing mortality, particularly among 
high-risk patients. Research indicates that patients 
with high preoperative urea levels have lower survival 
rates following surgery (15,16). AKI has been 
recognized as a factor that heightens postoperative 
complication risks, with patients with chronic kidney 
disease facing an even higher likelihood of surgical 
complications (17,18). Evaluating urea levels in 
the preoperative period is increasingly regarded as 
a valuable predictor for enhancing postoperative 
survival (19-21). Additionally, the long-term impact 
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of AKI may raise the likelihood of end-stage renal 
disease (ESRD) postoperatively, potentially resulting 
in sustained kidney dysfunction (22-23) Early 
identification and intervention for high-risk patients 
could significantly reduce postoperative mortality, 
highlighting the importance of robust predictive 
markers.

METHODS

This retrospective, observational cohort study was 
carried out at the Mersin University Medical Faculty 
Training and Research Hospital, a tertiary academic 
center with specialization in cardiovascular surgery. 
The study population included consecutive patients 
who underwent coronary artery bypass grafting 
(CABG) from January 1, 2022, to August 1, 2023.

Data Collection

Study Design: A nested case-control design 
within the cohort was utilized to enhance statistical 
power. Assuming an odds ratio (OR) of 1.5 for 
elevated urea levels and other mortality-associated 
factors, and with a confidence interval width set at 
25%, the sample size required was determined to be 
445 patients. Among these, deceased patients were 
matched at a 1:4 ratio with surviving patients.

Data Collection: Patient demographic data, 
laboratory test results, operative duration, left 
ventricular ejection fraction (EF), and multi-
vessel disease presence were collected. Venous 
blood samples were taken upon admission and 
postoperatively on a daily basis in EDTA-containing 
vacuum tubes. Complete blood counts (CBC) were 
recorded at multiple time points, with specific 
focus on urea levels, white blood cell (WBC) count, 
hemoglobin level, and platelet count, all analyzed via 
an automated blood cell analyzer.

Data Analysis

-Variable Adjustments: To strengthen mortality 
prediction accuracy, adjustments were made for key 
demographic variables, including age, gender, and 
the presence of comorbidities.

Statistical Analysis: Multivariate analysis was 
employed to control for confounding variables, 

enhancing the reliability of identified mortality 
predictors. Continuous data were expressed as means 
and standard deviations or medians with ranges, 
while categorical data were presented as frequencies 
and percentages. For group comparisons, Student’s 
t-test was applied for continuous variables (e.g., 
age, EF, biochemical measurements), and paired 
t-tests were used for repeated measures. Chi-square 
tests assessed relationships between mortality and 
categorical variables such as gender, diabetes mellitus 
(DM), and hypertension (HT). Odds ratios (ORs) 
and 95% confidence intervals (CIs) were calculated 
for variables associated with mortality, including 
age, gender, EF, DM, HT, and biochemical markers. 
Statistical significance was defined as p<0.05.

Software: Data analyses were conducted using 
IBM SPSS 21 and MedCalc statistical software. 
Parametric tests were used for continuous variables 
without normality testing, based on the Central 
Limit Theorem.

Data Availability Statement

Datasets generated and/or analyzed during the 
current study are available from the corresponding 
author upon reasonable request.

Ethical Approval

Ethical approval for the study was obtained from 
the Mersin University Ethics Committee with the 
decision numbered 2024/472 and dated 22/05/2024.

Declaration of Helsinki

The study and the writing of the article were prepared 
in accordance with the Declaration of Helsinki.

İnformed Written Consent

Informed written consent was obtained in the 
surgical consent form before the subjects were 
included in the study.

RESULTS

A total of 446 diagnosed patients were included in 
the study. The basic characteristics and clinical data 
are presented in Table 1.
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Table 1. Distribution of Socio-Demographic Characteristics in Patients Undergoing Open Heart Vascular 
Surgery (n=446)

Characteristic Mean±SD Median(Min-Mak)

Age (year)* 64.7±9.8 66(26-85)

Count (n) Percentage (%)
Gender**

Male 312 70

Female 134 30
DM**
No 192 43
Yes 254 57
HT**
No 280 62,8
Yes 166 37,2
Mortality**
Alive 350 78,5
Exitus 96 21,5

(x̄ ±SS) Median (Min-Maks.)
EF* 52.64±7.09 55(29-65)
PREOP
Creatinine(mg/dL)* 0.96±0.57 0.88(0.44-9.75)
Ure (mg/dL)* 38.91±15.65 35.6(16.85-114.85)
NEU(103mcL)* 5.58±1.34 5.02(1.01-14.95)
LYM(103mcL)* 2.02±0.78 1.94(0.32-5.79)
PLT(103mcL)* 238.03±63.03 233(79-519)
CRP(mg/L)* 23.54±18.78 8.89(0.43-413.27)
Albumin(mg/L)* 37.75±3.94 38.32(24.15-46.4)
*Student’s t-test, **Chi-Square test (p<0.05 significance), Paired t-test, p-value: Student’s t-test was used for continuous variables, paired t-test 
for repeated measures, and Chi-Square test for categorical variables. (SD: Standard Deviation, EF: Ejection Fraction, DM: Diabetes Mellitus, HT: 
Hypertension, CRP: C-Reactive Protein, PLT: Platelets, NEU: Neutrophils, LYM: Lymphocytes.)

This study examined the socio-demographic 
and clinical characteristics of a total of 446 patients 
undergoing open heart vascular surgery. These data 
provide a comprehensive foundation for assessing 
the impact of biochemical factors on patient 
outcomes and identifying high-risk individuals for 
targeted interventions.

The age range of the patients varied from 26 to 
85 years, with a mean age of 64.7 ± 9.8 years and 
a median age of 66 years. This indicates that the 
majority of the study population falls within the 
middle-aged and older age groups. Regarding 
gender, 70% of the patients were male, and 30% were 

female. This suggests that the majority of patients 
undergoing heart surgery were male.

Diabetes mellitus (DM) was present in 57% of 
the patients, indicating a significant portion of the 
population with this condition, which is known to 
increase the risk of complications. Hypertension 
(HT) was found in 37.2% of the patients, which is 
a known risk factor for cardiovascular diseases and 
can influence surgical outcomes.

Mortality occurred in 21.5% of the patients, 
underscoring the importance of assessing 
preoperative risk factors for better surgical planning 
and management. The mortality rate was adjusted for 
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the study by matching deceased patients to surviving 
patients at a 1:4 ratio. This matching approach aimed 
to enhance the statistical analysis and provide more 
accurate comparisons between the groups.

The left ventricular ejection fraction (EF) ranged 
from 29% to 65%, with a mean EF of 52.64 ± 7.09%, 
suggesting a wide range of cardiac function within 
the population. Lower EF values may indicate higher 
surgical risk.

Biochemical measurements were also taken into 
account. The mean creatinine level was 0.96 ± 0.57 
mg/dL, which is within normal limits but can still 
be indicative of renal function. The mean urea level 
was 38.91 ± 15.65 mg/dL, with a maximum value 
of 114.85 mg/dL. Urea levels, which reflect renal 
function and systemic inflammation, are important 
biomarkers to consider in assessing postoperative 
risk. Other biochemical parameters, including 
neutrophils (NEU), lymphocytes (LYM), platelets 

(PLT), C-reactive protein (CRP), and albumin levels, 
were also measured and could provide valuable 
insights into the inflammatory status and nutritional 
condition of patients, both of which are important 
for postoperative recovery and survival.

This study highlights the significant influence 
of preoperative risk factors on open heart vascular 
surgery outcomes. Conditions such as diabetes 
mellitus and hypertension were common among the 
patients and strongly associated with poorer surgical 
results. The findings emphasize the critical role of 
evaluating left ventricular ejection fraction (EF) 
and urea levels. Lower EF and elevated urea levels, 
which indicate both renal dysfunction and systemic 
inflammation, were key indicators of increased 
surgical risk. These results reinforce the importance 
of monitoring these biomarkers to better manage 
high-risk patients and improve postoperative 
outcomes.

Table 2. Assessment of Differences and Associations in Socio-Demographic and Biochemical Measurements 
According to Mortality Status (n=446)

Alive
(n=350)

Exitus
(n=96)

Features Mean±SD Mean±SD p-value*/***
Age (year) 63.88±9.52 64.64±12.72 0.52
EF 53.12±6.56 50.26±9.01 0.01
Pre-Creatinine(mg/dL) 0.94±0.54 1.1±0.35 0.21
Post-Creatinine(mg/dL) 0.99±0.56 1.35±0.57 <0.0001
p value** 0.002 <0.0001
Pre-Ure (mg/dL) 38.37±16.96 42.71±13.81 0.02
Post-Ure (mg/dL) 36.86±13.71 53.01±23.18 <0.0001
p value** <0.0001 <0.0001
Pre-NEU(103mcL) 5.56±2.41 5.66±2.66 0.74
Post- NEU(103mcL) 10.03±3.87 12.76±5.18 <0.0001
p value** <0.0001 <0.0001
Pre-LYM(103mcL) 2.03±0.68 2.14±1.21 0.43
Post-LYM(103mcL) 1.13±0.48 1.53±1.02 0.02
p value** <0.0001 <0.0001
Pre-PLT(103mcL) 237.11±69.32 232.74±75.95 0.6
Post-PLT(103mcL) 156.68±48.83 138.81±71.83 0.06
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In this study, the relationships between mortality 
and various socio-demographic and biochemical 
factors were assessed. Age did not show a significant 
difference between survivors and deceased patients, 
with no statistical significance observed (p>0.05). 
This suggests that age alone may not be a reliable 
predictor of mortality in this population. However, 
ejection fraction (EF) was significantly lower in 
deceased patients, with a mean EF of 50.26 ± 9.01 
compared to 53.12 ± 6.56 in survivors (p<0.05), 
highlighting the importance of cardiac function in 
determining surgical outcomes.

Preoperative and postoperative creatinine levels 
did not exhibit a strong association with mortality. 
While the preoperative creatinine difference was not 
significant (p>0.05), the postoperative creatinine 
levels were significantly higher in deceased patients 
(p<0.0001), suggesting that renal dysfunction after 
surgery is a key factor in mortality risk.

Urea levels, both preoperative and postoperative, 
showed significant differences between the two 
groups. Preoperative urea levels were higher in 

deceased patients, and postoperative urea levels 
were significantly elevated in the deceased group 
(p<0.0001). This indicates that urea, a marker of 
renal function and systemic inflammation, is a 
strong predictor of postoperative complications and 
mortality.

Neutrophil and lymphocyte counts were also 
significantly different between survivors and 
deceased patients. Postoperative neutrophil and 
lymphocyte levels were significantly higher in those 
who did not survive, further supporting the role of 
inflammation in influencing surgical outcomes.

No significant difference was found in platelet 
count between the groups, and postoperative 
C-reactive protein (CRP) levels were not significantly 
associated with mortality, suggesting that while 
these markers may reflect inflammation, they are 
not as strong indicators of mortality risk as other 
biomarkers like urea, neutrophils, and lymphocytes. 
Lastly, albumin levels showed a significant difference, 
with lower postoperative albumin levels observed in 
deceased patients, indicating its potential role as a 

Table 2. Assessment of Differences and Associations in Socio-Demographic and Biochemical Measurements 
According to Mortality Status (n=446)

Alive
(n=350)

Exitus
(n=96)

p value** <0.0001 <0.0001
Pre-CRP(mg/L) 19.06±17.11 26.99±22.39 0.36
Post-CRP(mg/L) 149.32±57.51 134.71±53.34 0.24
p value** <0.0001 <0.0001
Pre-Albumin(mg/L) 38.17±3.47 35.36±5.59 0.003
Post-Albumin(mg/L) 28.65±12.55 23.84±4.32 0.02
p value** <0.0001 <0.0001

n(%) n(%)
Gender Male 254(72.6) 58(60.4) 0.02***

Female 96(27.4) 38(39.6)

DM+ 218(62.3) 36(37.5) <0.0001***

HT+ 136(38.9) 30(31.3) 0.17***

*Student’s t-test, **Paired t-test, ***Chi-Square test (p<0.05 significance), p-value: Student’s t-test was used for continuous variables, paired t-test 
for repeated measures, and Chi-Square test for categorical variables. Statistical significance was considered at p < 0.05. The values marked in bold in 
the table indicate statistically significant results. (EF: Ejection Fraction, DM: Diabetes Mellitus, HT: Hypertension, CRP: C-Reactive Protein, PLT: 
Platelets, NEU: Neutrophils, LYM: Lymphocytes)
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marker for nutritional status and overall health. These 
findings emphasize the importance of monitoring 
multiple biochemical parameters to assess the risk of 
postoperative complications and mortality.

The analysis of socio-demographic and 
biochemical parameters reveals significant 
associations between mortality and select clinical 
indicators. While age and hypertension showed no 
significant correlation with mortality, factors such 
as lower ejection fraction (EF), male gender, and 
absence of diabetes mellitus (DM) were significantly 
linked to higher mortality rates. Furthermore, 
postoperative assessments indicated pronounced 
differences in key biochemical markers, with elevated 
creatinine, urea, neutrophil, and lymphocyte levels, 

alongside reduced albumin, being notably higher in 
patients who did not survive. These findings suggest 
that postoperative renal function and inflammatory 
responses are critical in predicting mortality 
outcomes. Interestingly, the absence of significant 
variation in postoperative CRP and platelet levels 
underscores the value of focusing on specific 
biomarkers to optimize postoperative monitoring 
and risk stratification.

Logistic regression analysis was performed 
to evaluate the effects on mortality. Statistical 
significance was considered at p < 0.05. The values 
marked in bold in the table indicate statistically 
significant results. (CI: Confidance Interval, EF: 
Ejection Fraction, DM: Diabetes Mellitus, HT: 
Hypertension)

Table 3: Assessment of the Association Between Mortality and Age, Gender, and Chronic Disease Status(n=446)

Variables Odds ratio 95% CI p-value
Age 1.1 0.98-1.03 0.52

Ejection Fraction (EF) 0.95 0.92-0.98 0.003

Gender (Risk: Male) 1.73 1.08-2.78 0.02

Diabetes Mellitus (DM) (Risk: Present) 2.75 1.73-4.39 <0.0001

Hypertension (HT) (Risk: Present) 1.39 0.86-2.26 0.17

In this study, several factors were evaluated for 
their association with mortality following open heart 
surgery. Age did not show a significant relationship 
with mortality, as the odds ratio of 1.1 (95% CI: 
0.98-1.03) and the p-value of 0.52 indicate that age 
alone does not significantly affect the risk of death. 
However, ejection fraction (EF) was significantly 
associated with mortality. Each 1-unit increase in 
EF reduced the risk of death by 0.95 times (95% CI: 
0.92-0.98, p<0.05), emphasizing the role of cardiac 
function in predicting postoperative outcomes. 
Gender was another significant factor, with male 
patients showing a 1.73 times higher risk of mortality 
compared to females (95% CI: 1.08-2.78, p<0.05). 
This suggests that male gender is linked to a higher 

likelihood of adverse outcomes. Diabetes mellitus 
(DM) had a strong impact on mortality risk, with 
diabetic patients having a 2.75 times higher risk of 
death (95% CI: 1.73-4.39, p<0.05). This reinforces 
the known association between diabetes and 
increased postoperative complications. On the other 
hand, hypertension (HT) did not show a significant 
association with mortality, as its odds ratio of 1.39 
(95% CI: 0.86-2.26) and p-value of 0.17 indicate no 
meaningful impact on mortality risk in this patient 
cohort.

Logistic regression analysis identified significant 
associations between mortality and key factors, with 
ejection fraction (EF), gender, and the presence 
of diabetes mellitus (DM) emerging as influential 
predictors. Specifically, each one-unit increase in 
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EF was associated with a 0.95-fold reduction in 
mortality risk, highlighting the protective effect of 
higher EF values. Male patients demonstrated a 1.73-
fold higher risk of mortality compared to females, 
while the presence of DM was associated with a 

2.75-fold increase in mortality risk. Notably, age and 
hypertension did not show significant associations 
with mortality, underscoring EF, gender, and 
DM status as primary predictors of postoperative 
survival.

Table 4: Assessment of the Association Between Preoperative Biochemical Parameters and Mortality(n=446)

Variables Odds ratio 95% CI p-value
Pre-Creatinine(mg/dL) 1.13 0.85-1.51 0.41

Pre-Ure (mg/dL) 1.02 1.001-1.03 0.03

Pre-NEU(103mcL) 1.02 0.93-1.11 0.74

Pre-LYM(103mcL) 1.16 0.89-1.52 0.28

Pre-PLT(103mcL) 0.99 0.98-1.01 0.6

Pre-CRP(mg/L) 1.01 0.99-1.001 0.19

Pre-Albumin(mg/L) -0.84 0.78-0.92 <0.0001

Logistic regression analysis was performed to 
evaluate the effect of preoperative biochemical 
parameters on mortality. Statistical significance was 
considered at p < 0.05. The values marked in bold 
in the table indicate statistically significant results. 
(CI:Confidence Interval, DNI: Delta Neutrophil 
Index, CRP: C-Reactive Protein, NEU: Neutrophils, 
LYM: Lymphocytes, PLT: Platelets, EF: Ejection 
Fraction)

In this study, the association between preoperative 
biochemical parameters and mortality following 
open heart surgery was assessed. Preoperative 
creatinine levels did not show a significant association 
with mortality (p>0.05), suggesting that creatinine 
alone may not be a strong predictor of surgical 
outcomes. Similarly, preoperative neutrophil (NEU), 
lymphocyte (LYM), platelet (PLT), and C-reactive 
protein (CRP) levels did not demonstrate significant 
associations with mortality, as their p-values were 
above the threshold of 0.05 (p>0.05). These findings 
imply that these markers may not be as relevant for 
predicting mortality in this context.

However, preoperative urea levels showed a 
significant association with mortality (p<0.05). 
Specifically, each 1-unit increase in preoperative 
urea levels was found to increase the risk of death 

by 1.02 times (95% Confidence Interval: 1.001-1.03). 
This suggests that elevated urea levels, reflecting 
renal function and systemic stress, could serve as an 
important predictor of poor postoperative outcomes.

Furthermore, preoperative albumin levels were 
also significantly associated with mortality (p<0.05). 
A 1-unit increase in albumin was found to reduce 
the risk of death by 0.84 times (95% Confidence 
Interval: 0.78-0.92), highlighting albumin’s potential 
as a protective factor. Lower preoperative albumin 
levels may indicate poor nutritional status and 
overall health, which are critical for recovery after 
surgery.

These findings underline the importance of 
monitoring specific biochemical parameters, such 
as urea and albumin, before surgery to better assess 
patient risk and guide management strategies.

The analysis of preoperative biochemical 
parameters identified urea and albumin levels as 
significant predictors of mortality. Specifically, 
each 1 mg/dL increase in preoperative urea was 
associated with a 1.02-fold increase in mortality 
risk, underscoring its prognostic importance. In 
contrast, higher albumin levels demonstrated a 
protective effect, with each 1 mg/dL increase in 
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albumin reducing mortality risk by 0.84-fold. 
Other preoperative factors, including creatinine, 
neutrophils, lymphocytes, platelets, and CRP, did not 
exhibit significant associations with mortality. These 

findings highlight the value of evaluating urea and 
albumin levels preoperatively to improve mortality 
risk stratification.

Table 5: Assessment of the Association Between Postoperative Biochemical Parameters and Mortality(n=446)

Variables Odds ratio 95% CI p-value
Post-Creatinine(mg/dL) 2.65 1.5-4.55 <0.0001

Post-Ure (mg/dL) 1.05 1.03-1.07 <0.0001

Post- NEU(103mcL) 1.14 1.08-1.21 <0.0001

Post-LYM(103mcL) 1.85 1.29-2.64 0.001

Post-PLT(103mcL) 0.98 0.97-0.99 0.02

Post-CRP(mg/L) 0.99 0.98-1.01 0.25

Post-Albumin(mg/L) -0.67 0.59-0.76 <0.0001

Logistic regression analysis was performed to 
evaluate the effect of postoperative biochemical 
parameters on mortality. Statistical significance was 
considered at p < 0.05. The values marked in bold 
in the table indicate statistically significant results. 
(CI:confidence interval, DNI: Delta Neutrophil 
Index, CRP: C-Reactive Protein, NEU: Neutrophils, 
LYM: Lymphocytes, PLT: Platelets, EF: Ejection 
Fraction)

In this study, the relationship between 
postoperative biochemical parameters and 
mortality was assessed, revealing several key 
findings. Postoperative creatinine levels were 
strongly associated with mortality. For each 1-unit 
increase in postoperative creatinine, the risk of 
death increased by 2.65 times (95% CI: 1.5-4.55, 
p<0.0001), highlighting the importance of renal 
function in predicting postoperative survival. 
Similarly, postoperative urea levels were also 
significantly associated with mortality, with each 
1-unit increase in urea raising the risk of death 
by 1.05 times (95% CI: 1.03-1.07, p<0.0001). This 
reinforces the role of urea as a critical marker for 
both kidney function and systemic inflammation. 
Postoperative neutrophils (NEU) were another 
important factor, with a 1-unit increase in neutrophil 

levels correlating with a 1.14 times higher risk of 
death (95% CI: 1.08-1.21, p<0.0001). This finding 
supports the idea that postoperative inflammation, 
as reflected by neutrophil levels, plays a significant 
role in mortality risk. Postoperative lymphocytes 
(LYM) were also associated with mortality, with 
a 1-unit increase increasing the risk of death by 
1.85 times (95% CI: 1.29-2.64, p=0.001), further 
indicating the importance of the immune response 
in predicting outcomes.

On the other hand, postoperative platelet levels 
(PLT) showed an inverse relationship with mortality. 
For each 1-unit increase in platelet count, the risk 
of death decreased by 0.98 times (95% CI: 0.97-0.99, 
p=0.02), suggesting that platelet levels might act 
as a protective factor in the postoperative period. 
Postoperative albumin levels were also found to be 
a significant predictor, with each 1-unit increase in 
albumin decreasing the risk of death by 0.67 times 
(95% CI: 0.59-0.76, p<0.0001). This highlights 
albumin as an important marker for nutritional 
status and overall health, where lower levels are 
associated with higher mortality risk.

These findings underscore the critical role of 
monitoring various postoperative biochemical 
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markers, particularly creatinine, urea, neutrophils, 
lymphocytes, platelets, and albumin, in predicting 
patient outcomes and guiding postoperative care.

Postoperative biochemical parameters revealed 
strong associations with mortality, with elevated 
creatinine, urea, neutrophil, and lymphocyte levels 
significantly increasing mortality risk. Specifically, 
a 1 mg/dL rise in creatinine correlated with a 2.65-
fold increase in mortality risk, highlighting the 
critical role of renal dysfunction. Elevated urea 
and neutrophil levels were also strongly associated 
with mortality, with each 1-unit increase in urea 
and neutrophil count raising mortality risk by 
1.05 and 1.14 times, respectively. In contrast, 
higher postoperative albumin and platelet counts 
demonstrated protective effects, with each 1-unit 
increase in albumin reducing mortality risk by 0.67-
fold. These findings underscore the importance 
of renal, inflammatory, and nutritional markers in 
postoperative risk stratification.

DISCUSSION

This study corroborates existing literature by 
affirming the critical role of perioperative urea levels 
as predictors of mortality in open-heart surgery. 
Our findings support the argument for integrating 
urea monitoring into standard protocols to improve 
postoperative care by facilitating timely, targeted 
interventions for high-risk patients. Implementing 
routine urea monitoring can be seamlessly integrated 
into existing workflows by incorporating regular 
biochemical assessments during perioperative 
evaluations. Training healthcare personnel to 
interpret urea levels in conjunction with other 
markers can streamline the identification of high-risk 
patients and ensure timely interventions. Developing 
standardized guidelines for urea monitoring, 
including threshold levels for intervention, will 
further enhance its utility in clinical practice. For 
example, in intensive care units (ICUs), daily urea 
level monitoring could be paired with protocols to 
adjust fluid management and medication dosages 
based on identified risk thresholds. High urea 
levels could trigger multidisciplinary discussions 

to optimize renal function and minimize systemic 
stress, reducing the likelihood of complications such 
as acute kidney injury (AKI). This approach not only 
improves patient outcomes but also ensures efficient 
use of ICU resources by prioritizing care for high-risk 
individuals. Incorporating urea levels into routine 
monitoring protocols not only aids in assessing 
renal function but also provides a dynamic measure 
of the inflammatory milieu. Such integration could 
facilitate targeted anti-inflammatory interventions 
in patients with elevated perioperative urea 
levels, thereby mitigating the risk of systemic 
complications. Postoperative surveillance of renal 
biomarkers, especially urea and creatinine, provides 
valuable insight into patient risk stratification and 
can guide postoperative care aimed at reducing 
mortality (18,19). Our findings further support the 
hypothesis that elevated urea levels may serve as a 
surrogate marker for systemic inflammation. This 
association highlights the potential for urea to act 
as an integrative biomarker, capturing both renal 
dysfunction and inflammatory stress, particularly 
in the context of perioperative management. 
Previous studies indicate that each unit increase 
in postoperative urea levels may raise mortality 
risk by 5%, underscoring the link between kidney 
function and tissue hypoxia (2,9). In agreement 
with these findings, our study observed a significant 
correlation between elevated postoperative urea 
levels and increased mortality, further establishing 
urea as a sensitive marker of renal and systemic 
stress responses. The literature consistently shows 
that postoperative urea elevations are associated not 
only with renal dysfunction but also with systemic 
inflammation and hypoxia (4,10,12).

Preoperative urea levels have also been 
documented as effective predictors of mortality 
(6,13,14). Research by Liaño and Pascual indicates 
that high preoperative urea levels increase the risk 
of postoperative mortality (6). A finding our study 
supports, as lower survival rates were similarly 
observed in patients with elevated preoperative urea. 
Elevated urea has been linked to a higher risk of 
cardiovascular and renal complications, particularly 
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among elderly patients (16). The long-term 
complications following acute kidney injury (AKI) 
can worsen outcomes in high-risk populations, 
emphasizing the necessity of close monitoring 
(17,18,21).

Zarbock et al. have underscored the relationship 
between sepsis-induced AKI and inflammation, 
highlighting its association with postoperative 
mortality (22). This link between inflammation and 
renal function underlines the predictive power of 
AKI for long-term outcomes and stresses the need 
for early intervention (22,24). Other studies on AKI 
prognosis suggest that early diagnosis is crucial to 
improving postoperative survival (23). Coca et al.’s 
systematic review further recommends vigilant 
monitoring for patients at high risk of adverse health 
outcomes and mortality post-AKI (18,19).

Research by Refaat et al. also points to a 
connection between high postoperative urea, organ 
dysfunction, and mortality (7). Our findings reinforce 
this association, showing a significant link between 
elevated postoperative urea levels and increased 
mortality within our study population. Wang et al. 
have reported that elevated urea levels are tied to 
systemic stress and trigger an inflammatory response 
(8). Such systemic stress markers, like increased urea, 
correlate with poor surgical outcomes, underscoring 
the importance of urea as a marker in postoperative 
evaluations (10,16). Collectively, these findings 
suggest that postoperative urea monitoring may play 
a crucial role in reducing mortality risk (15,20). This 
study’s emphasis on renal function as a predictor of 
mortality indicates a potential gap in current clinical 
practices, advocating for a more integrated approach 
to patient monitoring. Implementing routine urea 
monitoring could not only enhance individual 
outcomes but also support a more personalized 
approach to perioperative management.

In conclusion, this study’s observation that 
preoperative and postoperative urea levels are strong 
predictors of mortality aligns with existing literature. 
Routine monitoring of urea following cardiovascular 
surgery represents a valuable strategy in reducing 
mortality risk (13,23,24).

CONCLUSIONS

This study demonstrates that preoperative and 
postoperative urea levels are strong predictors of 
mortality following open-heart surgery. Particularly 
in the postoperative period, elevated urea levels reflect 
not only compromised renal function but also the 
metabolic stress associated with increased systemic 
inflammation and hypoperfusion. Our findings 
indicate that each unit increase in postoperative urea 
levels raises mortality risk by 5%, underscoring the 
influence of urea on cardiovascular stability beyond 
its role in renal function. This insight could inform 
the development of guidelines incorporating urea 
levels into postoperative monitoring, supporting a 
more personalized approach to patient care.

Additionally, our results, which suggest that 
preoperative urea levels may serve as a significant 
prognostic marker for mortality, underscore the 
importance of enhanced management of high-
risk patients during the preoperative phase. These 
findings highlight the value of monitoring urea 
levels in strategies aimed at reducing postoperative 
complications. The dual role of urea as both a 
renal and inflammatory biomarker reinforces its 
utility in perioperative care. Future research should 
further elucidate its inflammatory pathways to 
optimize its application in predicting and managing 
postoperative complications. Overall, this study 
provides valuable insights into the incorporation of 
urea as a key biomarker in clinical decision-making, 
with its use emerging as a crucial tool for improving 
postoperative survival, especially in high-risk patient 
populations.

Limitations of the Study

Despite the comprehensive nature of this study, 
its retrospective design and single-center data 
collection limit the generalizability of the findings. 
The observational nature also restricts causal 
inferences and subgroup analyses for specific patient 
populations, such as those with varying levels of 
renal impairment or distinct surgical complexities. 
Future research should focus on large-scale, 
multicenter studies to validate these findings and 
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ensure broader applicability across diverse patient 
populations. Prospective designs incorporating real-
time urea monitoring protocols could further refine 
its prognostic utility and facilitate the development 
of universally accepted perioperative guidelines.

KEY POİNTS

What is known about the topic?

Urea levels are well-established indicators of kidney 
function and have been associated with systemic 
inflammation and hypoxia, especially in patients 
undergoing cardiac surgery. Elevated urea levels, 
both preoperatively and postoperatively, have been 
linked to an increased risk of adverse outcomes, 
including mortality, particularly in patients with 
compromised renal function. However, in clinical 
practice, the use of urea as a routine biomarker 
for mortality risk assessment in cardiac surgery 
remains underutilized. Current literature suggests 
that additional research could further clarify urea’s 
predictive value and support its integration into 
perioperative management protocols for high-risk 
populations.

What does this study add?

This study underscores the importance of 
preoperative and postoperative urea levels as 
accessible and predictive biomarkers of mortality 
in open-heart surgery patients. By demonstrating 
that each unit increase in postoperative urea levels 
correlates with a 5% increase in mortality risk, the 
study emphasizes urea’s prognostic value beyond 
kidney function. This research contributes a 
practical, cost-effective approach to mortality risk 
stratification, especially for resource-limited settings, 
and lays the groundwork for incorporating routine 
urea monitoring into perioperative care protocols. 
The findings provide a robust foundation for future, 
larger-scale studies aimed at validating urea levels 
as a key component of personalized perioperative 
management strategies, potentially improving 
outcomes in high-risk cardiac surgery patients.
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Abstract:  Objective: One of the aims of a health study is to identify 
risk factors associated with the disease or to obtain predictive models for 
classification such as healthy / diseased. When the aim of a health study 
is classification, machine learning methods are widely used. Some of the-
se methods; Logistic Regression, Decision Tree, Random Forest, Support 
Vector Machine and Naive Bayes. The aim of this study was to evalua-
te the performance of the machine learning such as Logistic Regression, 
Decision Tree, Random Forest, Support Vector Machine and Naive Bayes, 
for different sample size, prevalence and determination coefficient in real 
data sets.
Method: The data were randomly split into 70% training and 30% test set, 
and Logistic Regression, Decision Tree, Random Forest, Support Vector 
Machine and Naive Bayes were applied to the training set. The performan-
ce measure (Accuracy, Area Under Curve and Adjusted F Measure) of the 
methods evaluated on the test set were saved. This procedure was repeated 
1000 times.These procedures were performed in the R 3.5 1.
Results: When all variables in the data are categorical, and determination 
coefficient is low with a moderate sample size, the Naive Bayes method 
exhibited higher performance. When all variables in the data are continuo-
us, and determination coefficient is moderate with a low sample size, sup-
port vector machines method demonstrated superior performance. In cases 
where the dataset has a high number of categorical variables and a high 
determination coefficient, the Naive Bayes method outperformed others. 
The Random Forest method showed higher performance when determina-
tion coefficient is high, and the sample size is moderate.
Conclusion: This study provides valuable insights for researchers dealing 
with classification problems, guiding them to choose the most effective 
machine learning based on the characteristics of the datasets.
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INTRODUCTION

Classification is a type of problem in machine 
learning (ML) that is commonly addressed using 
methods such as Random forest (RF) and Support 
vector machines (SVM) in areas like marketing, 
telecommunications, and medicine.1

Among the ML models mentioned above, Logistic 
regression (LR) is one of the fundamental methods 
in classifying binary (alive/dead, patient/control) 
groups. Although LR is widely used, the use of other 
ML models has become widespread recently. Some 
of these methods are Decision Tree (DT), Artificial 
Neural Networks, K-nearest neighbor, Ensemble 
Methods (Bagging, Boosting and RF), Naive Bayes, 
SVM2.

As in many other areas, decisions play an 
important role in medicine, especially in medical 
diagnostic processes. Since conceptual simple 
decision-making models that are capable of ML 
models should be considered for performing such 
tasks, DT is a very proper candidate.3 The DT is 
potent ML model that has been used successfully 
in many medical studies as it provides easily 
understandable graphical classification rules.3 
However, in the RF, which is one of the commonly 
used ensemble learning methods, each tree is built 
based on recursive partitioning, and the prediction 
is made on the average of an ensemble of trees rather 
than of a single tree.4

The NB is simple probabilistic ML model 
based on Bayes’ theorem with the assumption of 
independence between variables.5

The SVM is a ML model based on the statistical 
learning theory developed by Vapnik.6 SVM and 
LR use both linear and non-linear data to separate 
the two groups, but SVM classifies non-linear data 
better than logistic regression because it uses kernel 
functions. LR generates the linear decision boundary 
through logit transformation. SVM finds the linear 
hyperplane that provides the maximum margin. 
Therefore, SVM is more optimal than logistic 
regression as the margin is maximized.

The most commonly used performance criteria 
for evaluation of ML models in the literature are 
Accuracy (ACC), Area Under Curve (AUC) and 
Adjusted F Measure (AGF).

The aim of this study was to evaluate the 
performance of the ML models such as LR, DT, 
RF, SVM and NB, for different sample size (n), 
prevalence (prev) and determination coefficient (R2) 
in real data sets.

METHOD

Binary Logistic Regression

Regression methods have become an integral 
component of any data analysis concerned with 
describing the relationship between a response 
variable and one or more explanatory variables. 
Generally, logistic regression model is the case 
where the outcome variable is discrete by taking two 
or more possible values. The difference between an 
LR model and a linear regression model is that the 
outcome variable in LR is binary or dichotomous.7 
LR can be used for classification as well as for 
determining significant risk factors.

2.2. Decision Tree

DT is a non-parametric used for classification.8  It 
consists of four parts, which are the decision node, 
the root node, leaf node, and branches.9  In this 
structure, decision nodes represent the splitting 
measure on explanatory variables, leaf nodes 
represent a class label, and the root node represents 
the starting variable of the tree. Branches connect 
the nodes.

2.3. Random Forest

Breiman (1999) proposed RF, which combines the 
Random Subspace algorithm with the Bootstrap 
method.11 Each DT was constructed from a set 
obtained from the starting training set using a 
bootstrap.12 Ho (1998) has written many papers 
on “the random subspace” method, which does a 
random selection of a subset of features to use to 
grow each tree13 .
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2.4. Naive Bayes

NB is based on the assumption that the variables 
are conditionally independent14.  This assumption 
is called class conditional independence. This 
assumption is made to simplify the computations 
involved, hence is called “naive”.  Despite this 
unrealistic assumption, the resulting classifier known 
as naive Bayes is remarkably successful in practice, 
often competing with much more sophisticated 
techniques.15

2.5. Support Vector Machine

SVM is an ML model based on the statistical learning 
theory developed by Vapnik (1998). SVM aims 
to find a maximal margin hyperplane to separate 
classes. The kernel function is used to map data to a 
higher dimensional space for learning non-linearly 
separable functions. The accuracy of the SVM 
largely depends on the properly chosen kernel and 
its parameters.16

The kernel function can be linear, radial, and 
polynomial functions. The Radial basis function is 
affected by the kernel width (γ) and the regularization 
(C) parameters; therefore, determination of the 
best pairs of parameters for the study was carried 
out.17 The tune parameters for RF and SVM were 
automatically selected using the Caret package. 
Analyses were performed using R 3.5.1.

Real Data Study

ML models are tested on data sets from the UCI 
machine learning repository, including Breast 
Cancer18, Breast (Breast Cancer coimbra)19, Indian 
diabet pima 20, diabet21, heart22, Chronic kidney 
disease (CKD)23. The data were randomly split into 
70% training and 30% test set, and the performance 
criteria of the methods in the test set were recorded. 

This procedure was repeated 1000 times. These 
procedures were performed in the R 3.5 1.

Performance Measures

In literature, performance evaluation of ML models 
is usually based on one performance measure. 
However, using these criteria, the performance of the 
methods is evaluated separately. in this evaluation, 
different evaluations can be made according to each 
performance criterion. for example, the method 
with the best performance for accuracy may have the 
worst performance according to the sensitivity value. 
In this case, it becomes difficult to determine which 
method performs better. To overcome this situation, 
ACC, AUC and AGF are evaluated together in this 
study.

The standard F measure has some limitations, 
especially in classification problems with class 
imbalance or significant differences between classes. 
The F-measure is defined as the harmonic mean of 
precision and recall and is often used to evaluate 
classification models. However, in some cases this 
metric may not provide sufficiently meaningful 
results. These tend to over-emphasize the majority 
class in imbalanced datasets. For example, in a 
dataset with 95% negative instances and 5% positive 
instances, a model that correctly classifies only the 
negative class may still have a high F-measure value, 
which may misrepresent the performance of the 
model. Therefore, the adjusted F-measure is used.

This evaluation is the mean performance 
measures were calculated for each ML model and 
ordered from largest to smallest and scored from 5 
to 1. By summing the scores on each performance 
measure a final score was obtained. Table 1 shows 
how the ACC, AUC and AGF performance measures 
are calculated.
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RESULTS

The performance criteria of the ML models were 
evaluated using real data sets. The performance 

scores and properties of the real data sets are given 
in Table 2.

Table 1. Basic 2x2 Count Table

Disease Test results

Positive (T=1) Negative (T=0) Total
Present (D=1)  (True Positive)  (False Negative)
Absent (D=0)  (False Positive)  (True Negative)
Total N

Table 2 Properties and performance scores of ML models

Properties of data sets Performance scores
Datasets Prev R2 n NV #Cat #Cont LR DT RF SVM NB
Breast cancer 0.3 0.3 277 9 9 0 3 8 12 7 15
Breast cancer coimbra 0.6 0.4 116 9 0 9 5 6 12 13 9
Chronic kidney disease 0.3 0.8 158 24 13 11 3 6 13 9 15
Heart 0.3 0.6 299 12 5 7 3 11 15 8 8
NV: Number of variables, Cat: Number of Categorical variables, Cont: Number of Continuous variables

In scenarios where Prev=0.3, R2= (0.3, 0.8) and 
n= (158, 277), NB method has higher performance 
than other methods. In scenarios where the number 
of categorical variables in the data is high, the NB 
method has higher performance.In the scenario 
where prev=0.3, R2= 0.6 and n=299, RF method 
has higher performance than other methods, while 
in the scenario where prev=0.6, R2= 0.4 and n=116, 
RF and SVM methods have similar and higher 
performance than other methods. In scenarios 
where R2 is medium and high and the number of 
continuous variables in the data is high, RF method 
has higher performance.

DISCUSSION

Machine learning methods are used to classify 
diseased and healthy individuals in health studies. 
Correctly classifying diseased and healthy individuals 
is of great importance for early diagnosis of diseases 
and determining treatments for these diagnoses. 
There are many papers in literature investigating the 
performance of classification methods, but it is not 
clear which method performs better under which 
conditions. Given this situation, our aim in this 
paper is to evaluate the performance of classification 
methods on real data sets with n, prev and (R2). 
Performance evaluation of ML models is based on 
one real data set, mostly two- or three-ML models 
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were compaired based on one or two and rarely three 
performance criteria. In this study, the performance 
of five ML models was evaluated based on ACC, 
AUC and AGF under real data sets. In this context, 
when all variables in the data were categorical, R2 
was low, and the sample size was moderate, the NB 
method demonstrated superior performance. When 
all variables in the data were continuous, and R2 was 
moderate, and the sample size was low SVM method 
exhibited higher performance. When the number of 
categorical variables in the data was high, and R2 was 
high, the NB method outperformed others. The RF 
method showed higher performance when R2 was 
high, and the sample size was moderate to high.

Arasakumar et al. compared LR, DT, and RF on 
the breast cancer dataset and they observed that 
RF method shows better performance, which is 
consistent with our data24.

Gokiladevi et al. compared SVM, RF, LR and DT 
on the chronic kidney disease dataset and observed 
that the performance of RF method shows better 
performance. This result is compatible with our real 
data25.

Yu et al. compared DT, NB, RF and SVM according 
to the accuracy criteria, on breast cancer dataset and 
did not observe any significant difference26.

Limitations of the study

More datasets can be used for comparisons, and 
different ML models can also be applied.

CONCLUSION

In conclusion, the performances of the data sets 
differ according to the structure of the data sets 
(n, r2 and prev, continuous and categorical). 
Therefore, evaluating the data sets according to the 
characteristics of the data sets will enable us to make 
more accurate comments. We hope that this study 
helps any researcher confronted with classification 
problems to select the best performing two- or 
three-ML models based on the characteristics of the 
data set.
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